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We investigate the effects that variations in profile have on specular reflectance and 

polarization from a grating consisting of parallel lines or trenches.  We model the effects of 

variations by calculating the reflectance of a superstructure, in which the profiles are 

randomly modulated about their nominal profile.  We investigate, as an example, a 

nominal grating consisting of 100 nm silicon lines having a vertical sidewall angle, a pitch 

of 200 nm, and a height of 100 nm probed with a wavelength of 532 nm.  We vary the 

edge positions, the edge profiles, the line heights, and the trench depths and find that the 

Stokes reflectance can be modified from its nominal value by a relatively large amount, 

especially in the case of line-width variations.  We find that the reflected field can be 

approximated by the mean field reflected by a distribution of periodic gratings and that the 

field does not represent the field from the average profile. When fitting results to more than 

one modeled parameter, the changes that are observed can be enough to shift the deduced 

parameter in some cases by more than the rms variation of that parameter. The diffuse 
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reflectance (the non-specular diffraction efficiency) is found to increase with the variance 

of the fluctuations.   

OCIS Codes: 050.0050, 120.2130, 120.3930, 290.3700  

 

1. Introduction 

 
The reflectance of a periodic array of lines on a surface can be very sensitive to the profile of that 

structure.  The semiconductor industry has capitalized on this sensitivity to measure line widths 

and profiles of micro-fabricated structures.1,2,4,5,8-10,12 Measurements generally consist of 

recording the reflectance or polarization as a function of incident angle or wavelength from a 

periodic test structure.  Comparison of the measurement with a library of simulated results for a 

variety of different possible profiles yields the one which matches the data best.  The technique 

has been dubbed scatterometry in the industry, although rarely does it make use of the diffusely 

scattered light or anything but the specular reflectance. 

While the method is extremely sensitive to details of the profile, comparisons between 

scatterometry instruments and other metrology methods have not yielded ideal agreement.11  One 

of the assumptions that is generally made in the interpretation of data is that the structure is 

indeed periodic, and that any deviation from periodicity gives the same result as some “average” 

profile.  In this article, we investigate the validity of this assumption by performing Monte Carlo 

(MC) simulations on extended gratings with randomized profiles.  We find that deviations from 

periodicity do not give the same result as the field from the average profile, but rather that the 

reflected field can be approximated by the mean field reflected by a distribution of periodic 
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profiles.  Furthermore, the best fit simple profile to the MC simulated data can be shifted by a 

large amount from that predicted by the average profile. 

In Section 2, we outline the theoretical approach used to perform the MC simulations and 

describe a mean-field model used to approximate the results.  In Section 3, we present the results 

of those simulations and discuss them.  Finally, in Section 4, we draw some conclusions from 

this work. 

2. Theory 

A. Grating Simulations 

We use the rigorous coupled wave (RCW) analysis for surface relief gratings developed by 

Moharam, et al.,6,7 with a modification suggested by Lalanne and Morris3 to improve the 

convergence of the calculations for transverse-magnetic (TM) polarization.  This method solves 

the electromagnetic problem for a plane wave incident upon a medium having a dielectric 

function ( , , ) ( )jx y z xε ε= , which is periodic in x, independent of y, and independent of z within 

each of a finite number of layers, indicated by index j.  The solution requires Fourier series 

expansions of ( )j xε  and 1/ ( )j xε  for each layer.  In practice, the Fourier series is truncated at 

some maximum order N. We generally chose N so that the shortest period of the Fourier 

component considered is 10 nm.  

B. Monte Carlo Simulations 

We begin by considering an unperturbed grating having a period Λ0.  To simulate variations in 

the profile, we create random profiles having a total period 0M MΛ = Λ  (M an integer) and solve 
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for the scattering amplitude using the RCW method on this larger period.  Generally, the 

unperturbed grating gives rise to diffraction at discrete directions, given by 

 0sin sin /i iθ θ λ= + Λ , (1) 

where θ is the incident angle, iθ  is the diffracted angle, and λ is the wavelength of the light. The 

simulated profiles having the longer period give rise to diffraction at additional directions, such 

that i takes on fractional values (i.e., iM is an integer).  We will denote these fractional orders as 

diffuse orders, since they do not exist for the primary period, and as M increases, the number of 

these orders expands into a diffuse continuum as would be expected from a non-periodic 

structure. 

We consider four different perturbations of the profile, illustrated in Fig. 1.  In the first 

case [Fig. 1(a)], we consider variations in the line edge position. We let L
jx∆  and R

jx∆  be 

deviations of the left and right edges of the j-th line.  We create realizations of the random 

profile, using a pseudo-random number generator having a normal distribution with standard 

deviation σ.  We further consider three different sub-cases of line edge variation.  For line 

position variation, we let L R
j jx x∆ = ∆ ; for line width variation, we let L R

j jx x∆ = −∆ ; and, for 

random edge variation, we let L
jx∆  and R

jx∆  be independent.  In all calculations for the 

simulation of line edge variation, since the side walls are vertical, only one z-level is required in 

the RCW calculation.  

The second profile perturbation corresponds to sidewall roughness [Fig. 1(b)].  In this 

case, the profile of the sidewall consists of realizations of a random function having an rms 

roughness σ and correlation length τ.  Realizations of the random function are generated by 
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( ) Re d d ( ) exp[i ( ) i ( )]
2

x z k z g z k k z zφ
π

′ ′ ′∆ = + −∫ ∫   (2) 

where ( )kφ  is a uniform random function with interval (0,2π], and  

 2( ) exp[ ( / ) / 2]g z A z τ= −  (3) 

is the correlation function.  A is adjusted to yield a specific rms roughness.  Eq. (2) is derived 

from a Fourier transform of the correlation function, multiplication by a random phase, followed 

by an inverse Fourier transform. For a finite interval, L, over which a realization of the function 

is calculated, A is given by  

 1/4 1/2( / ) erf ( / 2 )A L Lσπ τ τ= . (4) 

Like the case of line edge position variation, we consider three different sub-cases, analogous to 

line position, line width, and random edge variation.  Line-edge variation is a special case of 

sidewall roughness, where Lτ ≫ .  For all simulations of sidewall roughness, the profile was 

subdivided into 50 levels.  The only correlation length considered was 10τ =  nm. 

The third profile perturbation considered is that of line height variation [Fig. 1(c)].  Here 

we use a pseudo-random number generator having a normal distribution with standard deviation 

σ to sample the perturbation of the height of each line of the grating.  To perform the RCW 

calculation for M lines, we divide the grating into M discrete z-levels.  We sample the M heights 

jz∆  from the distribution, sort the values in ascending order, and use the differences between 

heights to determine the thickness of each level. Each level only contains the lines which extend 

to that level. 
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The fourth, and final, profile perturbation is that of trench depth variation [Fig. 1(d)].  

The simulation for trench depth variation is performed in a manner analogous to that used for 

line height variation. 

For each case, MC simulations were performed for at least 40 realizations of the surface 

profile. The mean and the standard error for each measurable parameter were found.  We used M 

= 10 lines for each realization, except in the case of sidewall roughness, where we used M = 5 

lines, to compensate for the larger number of layers needed and the resulting additional 

computation time.  The nominal pitch Λ0 was 200 nm, the nominal height was 200 nm, and the 

nominal width was 100 nm.  The optical constants of the grating material and the substrate were 

those appropriate for silicon.  The wavelength was 532 nm, where the optical constants are n = 

4.05 and k = 0.05, unless otherwise noted. 

Simulations were performed for two incident orthogonal polarizations at normal 

incidence and 70° incidence perpendicular to the lines.  The Stokes parameters for incident light 

linearly polarized at an angle of 45°, 
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are presented, where TEr  and TMr  are the reflectance coefficients for light polarized with the 

electric field and magnetic fields along the lines, respectively. Simulations in a conical geometry 

with 70° incidence along the lines were also performed, but the conclusions do not differ from 

the others, and the results are not shown.   
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C. Mean Field Model 

We compared the MC simulation results to those of an approximate model to answer the 

question of whether or not the field reflected by a random pattern is the average of the field 

reflected by a distribution of periodic patterns.  If the scattering by the lines is dominated by the 

structure of each individual line, rather than by line-line interactions, then we would expect this 

statement to be true. If we consider the field scattered by a periodic array of lines having 

parameter a (height, depth, width, or period) to be ( )aE , then the field averaged over a normal 

distribution of the parameter a is given by 

 22
0

1
d ( )exp[ ( ) / 2 ]

2
aa

a

a a a a σ
σ π

= − −∫E E  (6) 

where a0  and aσ  are the mean and standard deviation of a, respectively. Since the RCW theory 

references the field to the top of the lines, variations in line height and line depth differ by the 

introduction of an additional phase term 

 ( ) ( )exp( 2i )zh d k d= −E E  (7) 

where (2 / )coszk π λ θ=   is the z-component of the wavevector.  For variations in line width or 

period, since the parameter σ  is the rms variation of a single edge, it must be borne in mind that 

comparisons between the Monte Carlo models must be performed such that  linewidth 2σ σ=  for 

random edge variation, linewidth 2σ σ=  for line width variation, and period / 2σ σ=  for line 

position variation.  Eq. (6) is evaluated by numerical integration, sampling the electric field at 

discrete points.  The mean field model is attractive, if it proves to be accurate, because 
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simulations required to evaluate Eq. (6) are performed anyways during construction of a 

scatterometry library. 

3. Results and Discussion 

Figures 2 and 3 show results for the specular Stokes reflectance obtained from the MC 

simulations for line edge variation and sidewall roughness.  Results from both MC simulations 

(symbols) and the mean field model (curves) are shown. It is apparent that line variation has a 

relatively large effect on the reflectance of the grating.  Changes in the Stokes parameters 

correspond, for example, to fractional changes in the p-polarized reflectance, 0 1pR R R= − , of 

almost 50 %, over the range of variations studied, even though the average profile is fixed and 

the rms variations are less than 2 % of the wavelength.   

To assess the magnitude of these results and how they might translate into errors in the 

dimensions extracted from data, the four MC-simulated Stokes parameters were least-squares 

fitted to those calculated for simple profiles (i.e., with period 0Λ ), letting line width and line 

height be free parameters.  It was found, for example, that for random edge variation measured at 

normal incidence [i.e., Fig. 2(a), open symbols], the best fit line height decreased at a rate of 

approximately three times the rms variation, and the best fit line width increased at a rate of 

approximately two times the rms variation.  Some of this unexpectedly large effect is due to the 

large covariance between line height and line width and to the small number of data points (4) 

versus the number of fitting parameters (2). While we are varying only line edge position, we are 

comparing the MC results to simulations where we vary both line width and line height.  Thus, 

the line height compensates for the fact that the mean Stokes parameters do not correspond to 

those for a simple profile with the same height. Most scatterometry instruments do not perform 
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measurements at a single wavelength and angle but rather use a scan over one of these variables.  

Thus, the specific example we give may not be representative of a realistic scatterometry 

measurement.  However, this simple comparison does suggest that variations in line profile can 

have an adverse effect in the profile determination, if variations in that profile are not considered. 

Later, we discuss results where we MC simulate a wavelength scan. 

The effects of sidewall roughness, shown in Figs. 2 and 3 as closed symbols, are very 

similar to those obtained for line edge variation.  Since the sidewall roughness considered and 

line edge variation represent two extremes in correlation length of sidewall roughness, we 

conclude that the correlation length has a relatively weak effect on the reflectance.   

The effects of line width variation are much stronger than that observed for incoherent 

line edge variation, which in turn are much stronger than that observed for line position 

variation.  In fact, a change in the abscissa for the random edge variation results by a factor of 

about 2  maps them onto the results for line width variation. These observations suggest the 

reflection properties, at least for this particular grating, are dominated by the size of the features 

rather than the space between them and that the mean-field model would be an appropriate 

approximation. 

The results for the simplified mean-field model are shown as curves in Figs. 2 and 3, 

where variations in line width were considered [i.e., a in Eq. (6) was line width].  Most of the 

trends observed in the MC results are reproduced, but there is not a perfect match between them.  

Presumably, differences between the mean-field model and the MC results must be a result of 

differences in the line widths between adjacent lines having an effect on the reflection properties.  

The case of line edge roughness matches the model quite well, while the corresponding case of 

sidewall roughness does not match well at all, showing a much larger dependence upon rms 
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variation. While the models do not match perfectly, the fact that the calculations required to 

evaluate Eq. (6) are performed anyway during the construction of a scatterometry library may 

make the mean-field model attractive for approximating the effect of line edge variations, line 

width variations, or sidewall roughness.   

Figures 4 and 5 show the results for line height and trench depth variations. The effects 

are less pronounced than for line edge variation, but nonetheless significant.  The qualitative 

agreement between the MC simulations and the mean-field model is also similar to that observed 

for line edge variation.  In this case, variations in trench depth were considered [i.e., a in Eq. (6) 

was trench depth], and the phase was appropriately adjusted for the case of line height variation, 

as described above. 

Figure 6 shows the integrated diffuse reflectance, calculated by summing all of the non-

specular diffraction efficiencies, for line edge variation and sidewall roughness at normal 

incidence. Because the super-period MΛ  chosen was different, there were six orders (i = ±1, ±2, 

and ±3) summed in the case of line edge variation while only two orders (i = ±1) summed in the 

case of sidewall roughness. The results show a characteristic proportionality between the 

integrated diffuse reflectance and the variance parameter 2σ .  In all cases, the diffuse reflectance 

is too small to account for any changes in the specular reflectance. However, the diffuse scatter 

for line position variation is significantly less than that for other cases of line variation, which is 

in agreement with changes that are found to occur in the specular reflectance. Table 1 shows the 

fraction of the total diffracted light diffracted into each of the orders for the three cases of line 

edge variation. While only three orders appear on each side of the surface normal in these 

simulations, the results in Table 1 suggest that the angular distribution of diffusely scattered light 

would be very different for the different cases of line edge variation, at least in the case where 
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there are no line-to-line correlations.  Line-to-line correlations would be expected to further 

affect the distribution of diffusely scattered light. 

Figure 7 shows the MC-simulated normal incidence Stokes reflectance of the structure 

for wavelengths from 250 nm to 600 nm for the case of random edge variation with σ = 10 nm. 

The behavior of the nominal structure, shown as solid curves, does not approximate well the 

behavior for the MC-simulation, shown as symbols, showing shifts in some regions of the 

spectrum and significantly more structure.  The predictions of the mean field approximation, 

shown as dashed curves, are much closer to the MC simulation of the perturbed profile, 

especially at shorter wavelengths.  At longer wavelengths, correlations between lines ought to 

become important, so that the mean field model would fail, but it is still a much better match to 

the perturbed structure than that calculated for the nominal, unperturbed grating. 

A least-squares best fit of the MC-simulated results to a simple profile (i.e., with period 

0Λ ), letting the line width and line height be free parameters, yielded a width of 98.9 nm and a 

height of 198.8 nm. The observed shift, 1.1 nm in width and 1.2 nm in height, is much smaller 

than that found for the single Stokes fit described above. The best fit curves were only slightly 

better than those for the nominal profile, with an improvement in the mean-square deviation of 

only 5 %.  A fit to a simple profile with an angled sidewall, letting the top width, bottom width, 

and height be free parameters, yielded a top width of 95 nm, a bottom width of 105 nm, and a 

height of 200 nm.  While a slightly better fit (see Fig. 7, dotted curves) to the MC-simulation 

than that for the simpler profile, the improvement in the mean-square deviation compared to that 

of the nominal profile was still small, only 15 %.  Both fits only searched for the nearest local 

minimum in the mean-square deviation and did not search for a global minimum.  However, it is 



 12 

clear that with multiple fitting parameters, significant systematic errors can result from the 

neglect of the profile variation.  

This study only investigated the effects of line profile shape and did not consider 

variations in that profile along the y direction.  The latter variations are commonly referred to as 

line-edge roughness (LER) and line-width roughness (LWR) when the position and width vary 

along the line, respectively.  LER and LWR are considered important to microfabrication 

because they may have an effect on device performance and limit the precision of critical-

dimension scanning electron microscopy (CD-SEM).  The effects of LER and LWR on specular 

diffraction might be expected to follow those of line position variation and line width variation, 

provided the correlation length of the roughness in the y direction is significantly larger than the 

period.  It waits to be seen, until full three-dimensional simulations are performed, what the 

effects are of short correlation length roughness. 

In all of the MC simulations that were performed, there were no line-to-line correlations. 

The matching of the mean-field model to the MC-simulated results would be expected to be 

better if correlations between neighboring lines were higher.  Higher line-to-line correlations 

would be expected in the cases of line height and line depth variations, because, in practice, these 

originate from non-uniform etching, deposition, or coating, or roughness of the initial material. 

However, the cases of line edge variation, line width variation, and sidewall roughness tend to be 

uncorrelated from line to line, except at distances larger than those typically used for 

scatterometry targets (50 µm to 100 µm), because the mechanisms that lead to the small distance 

correlations are usually related to the photoresist structure, while those that lead to the large 

distance variations are usually related to focus and exposure.  

4. Conclusions 
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This article described some Monte Carlo simulations of reflection and scattering by randomized 

gratings.  The results indicate that the various forms of line variation, with the exception of line 

edge variation, can have a large effect on the results of scatterometry measurements and 

interpretation.  A mean-field model is suggested that approximates the behavior found in the 

MC-simulations in a number of different cases.  The model is much more computationally 

efficient, and uses calculation results that would otherwise need to be performed anyway during 

scatterometry library generation. 
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Tables 

Table 1: Average fraction of power diffracted into different orders for normal illumination 

calculated for line edge variation.  

 Order 

 ±1 ±2 ±3 

Random edge variation 26 % 16 % 7 % 

Line width variation 21 % 16 % 13 % 

Line position variation 10 % 21 % 18 % 

 

Figure Captions 

Figure 1: Illustration of the four different profile perturbations considered in this study: (a) line 

edge variation, (b) sidewall roughness, (c) line height variation, and (d) trench depth variation.  

The greyscale represents the refractive index in the xz plane; the profiles are independent of the y 

direction. The profiles shown here are exaggerated, having twice the maximum modulation 

considered in the simulations.  In both (a) and (b), the case of random edge variation is shown. 

Figure 2: Specular reflectance Stokes parameters calculated as functions of rms variation σ for 

normal incidence and for (open symbols) MC-simulated line edge variation, (closed symbols) 

MC-simulated sidewall roughness, and (curves) the simplified mean-field model.  Three cases 

are shown: (a) random edge variation, (b) line width variation, and (c) line position variation.  

The symbols and curves represent (squares, solid curves) R0, (circles, dashed curves) R1, 

(upward triangles, dotted curves) R2, and (downward triangles, dash-dot curves) R3. 

Figure 3: Same as Fig. 2, except for an incident angle of 70°. 
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Figure 4: Specular reflectance Stokes parameters calculated as functions of rms variation σ for 

normal incidence and for (a) line height variation and (b) trench depth variation. The data 

represent (symbols) the MC simulations and (curves) the simplified mean-field model.  The 

symbols and curves represent (squares, solid curves) R0, (circles, dashed curves) R1, (upward 

triangles, dotted curves) R2, and (downward triangles, dash-dot curves) R3. 

Figure 5: Same as Fig. 4, except for an incident angle of 70°. 

Figure 6: Integrated non-specular diffraction efficiency found from MC simulation for normal 

incidence as a function of rms variation σ for (open symbols) line edge variation, (closed 

symbols) sidewall roughness. Three cases are shown: (squares) random edge variation, (circles) 

line width variation, and (triangles) line position variation. 

Figure 7: Normal incidence Stokes reflectance as a function of wavelength for (symbols) MC-

simulated random line edge variation with σ = 10 nm, (solid curve) unperturbed profile, (dashed 

curve) the mean-field model, and (dotted curve) the result of a best fit to a simple profile with a 

non-vertical sidewall, as described in the text. 
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Figure 1: Illustration of the four different profile perturbations considered in this study: (a) line 
edge variation, (b) sidewall roughness, (c) line height variation, and (d) trench depth variation.  
The greyscale represents the refractive index in the xz plane; the profiles are independent of the y 
direction. The profiles shown here are exaggerated, having twice the maximum modulation 
considered in the simulations.  In both (a) and (b), the case of random edge variation is shown. 
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Figure 2: Specular reflectance Stokes parameters calculated as functions of rms variation σ for 
normal incidence and for (open symbols) MC-simulated line edge variation, (closed symbols) 
MC-simulated sidewall roughness, and (curves) the simplified mean-field model.  Three cases 
are shown: (a) random edge variation, (b) line width variation, and (c) line position variation.  
The symbols and curves represent (squares, solid curves) R0, (circles, dashed curves) R1, 
(upward triangles, dotted curves) R2, and (downward triangles, dash-dot curves) R3. 
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Figure 3: Same as Fig. 2, except for an incident angle of 70°. 



 21 

 

0 2 4 6 8 10
0.05

0.10

0.15

0.20

 

 

rms variation (nm)

(b)

0.05

0.10

0.15

0.20

 

 
S

to
ke

s 
R

ef
le

ct
an

ce

(a)

 
Figure 4: Specular reflectance Stokes parameters calculated as functions of rms variation σ for 
normal incidence and for (a) line height variation and (b) trench depth variation. The data 
represent (symbols) the MC simulations and (curves) the simplified mean-field model.  The 
symbols and curves represent (squares, solid curves) R0, (circles, dashed curves) R1, (upward 
triangles, dotted curves) R2, and (downward triangles, dash-dot curves) R3. 
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Figure 5: Same as Fig. 4, except for an incident angle of 70°. 
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Figure 6: Integrated non-specular diffraction efficiency found from MC simulation for normal 
incidence as a function of rms variation σ for (open symbols) line edge variation, (closed 
symbols) sidewall roughness. Three cases are shown: (squares) random edge variation, (circles) 
line width variation, and (triangles) line position variation. 
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Figure 7: Normal incidence Stokes reflectance as a function of wavelength for (symbols) MC-
simulated random line edge variation with σ = 10 nm, (solid curve) the nominal profile, (dashed 
curve) the mean-field model, and (dotted curve) the result of a best fit to a simple profile with a 
non-vertical sidewall, as described in the text. 
 


